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Abstract
Identities and inequalities are proved for the order parameters, correlation
functions and their derivatives of the Ising spin glass. The results serve as
additional evidence that the ferromagnetic phase is composed of two regions,
one with strong ferromagnetic ordering and the other with the effects of disorder
dominant. The Nishimori line marks a crossover between these two regions.

PACS numbers: 05.50.+q, 75.50.Lk

1. Introduction

One of the significant problems in the theory of finite-dimensional spin glasses is the structure
of the phase diagram. Numerical investigations have revealed the precise locations of critical
points and phase boundaries [1]. However, we still have only limited knowledge from
analytical treatments of the problem. An interesting exception is the gauge theory which
makes use of gauge symmetry of the system to derive a variety of exact/rigorous results on
physical quantities including the energy, specific heat and correlation functions [2, 3]. In this
paper, we derive a class of relations for the order parameters and correlation functions using
the gauge theory to clarify the behaviour of the system within the ferromagnetic phase.

Properties of the ferromagnetic phase in models of spin glasses have not been studied
very extensively compared to the spin glass phase. Nevertheless, as shown in [4, 5], a very
interesting non-trivial change of the system behaviour is observed on a line, the Nishimori
line, in the phase diagram: the spins become more ferromagnetically ordered (i.e. parallel
to each other) as the temperature is lowered above this line whereas the same spins turn to
become misaligned below the same line with further decrease of the temperature. Although
this line is not a phase boundary in the thermodynamic sense, it marks in the above sense a
clear crossover between the two regions within the ferromagnetic phase. The argument in
this paper using the gauge theory reinforces this picture through relations between the order
parameters and their derivatives.
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Figure 1. A plausible generic phase diagram of the ±J model. The system has paramagnetic (P),
ferromagnetic (F) and spin glass (SG) phases. The Nishimori line K = Kp shown by the dashed
curve marks a crossover between two regions within the ferromagnetic phase.

An important consequence of the gauge theory is an identity between the distribution
function of the ferromagnetic order parameter Pm(x) and that of the spin glass order parameter
Pq(x): these two functions are equal to each other Pm(x) = Pq(x) on the Nishimori line
[3, 6]. This functional identity implies the absence of replica symmetry breaking because
Pm(x) is trivial, composed of at most two simple delta functions, and, therefore, so is Pq(x).
The relation Pm(x) = Pq(x) also leads to the equality m = q , an identity between the
ferromagnetic and spin glass order parameters [2, 3], implying an exact balance between the
two types of ordering. From m = q we may expect that the ferromagnetic order parameter
exceeds the spin glass order parameter m > q above the Nishimori line because, in the limit
of a non-random system (which is above the line), we have q = m2 < m. Another reason to
expect m > q is that, as mentioned above, ferromagnetic ordering dominates above the line.
The opposite inequality q > m is likely to hold below the same line since the spin glass phase
(lying below the line) has q > m = 0, and, in addition, the effects of quenched randomness
are more dominant (apparent misalignment of spins) below the line as explained above.

These two inequalities for the order parameters can be verified in the mean-field
Sherrington–Kirkpatrick model [7] within the replica-symmetric solution (which is valid near
the Nishimori line as mentioned above) but have been considered difficult to check analytically
for general finite-dimensional systems. We show in this paper that these inequalities are closely
related to temperature derivatives and some inequalities of the order parameters, thus coming
closer to a proof.

We present our results and their proofs in the next section. Discussions are given in the
last section. Some of the details of calculations are described in the appendix.

2. Identities and inequalities

To be specific, let us consider the ±J Ising model on an arbitrary lattice with the probability
of ferromagnetic interaction denoted by p. The expected phase diagram is depicted in figure 1.
The main physical quantities we treat in this paper are the ferromagnetic and spin glass order
parameters defined by

m = [〈Si〉K ] q = [〈Si〉2
K

]
(1)

respectively, with i well interior of the lattice. The inner brackets denote the thermal average
with coupling constant K = J/T , and the outer square brackets are for the configurational
average characterized by the parameter p. The spins on the boundary of the lattice under
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consideration are set to up states to avoid trivial vanishing of the thermal expectation value of
the one-point function 〈Si〉K . It is sufficient to consider a single parameter q as a spin glass
order parameter instead of its distribution function Pq(x) because replica symmetry breaking
is absent when K = Kp ≡ 1

2 log(p/(1 − p)) [6, 3], the Nishimori line, on and near which we
concentrate ourselves for the moment.

The identity m = q , valid when K = Kp, has long been known [2]. The first of our new
results is the following relations:

∂q

∂K
= 2

∂m

∂K
(2)

∂2q

∂K2
� 2

∂2m

∂K2
(3)

both of which hold under the condition K = Kp.
The proof is straightforward. As shown in the appendix, the magnetization is rewritten

using gauge transformation as

m = [〈Si〉K ] = [〈σi〉Kp
〈Si〉K

]
(4)

where 〈σi〉Kp
is the thermal average of the Ising spin σi (introduced by the gauge

transformation) of the same system as the original ±J model with effective coupling Kp.
The first and second derivatives of m are then

∂m

∂K
=
[
〈σi〉Kp

∂

∂K
〈Si〉K

]
(5)

∂2m

∂K2
=
[
〈σi〉Kp

∂2

∂K2
〈Si〉K

]
. (6)

The derivatives of the spin glass order parameter are obtained directly from definition (1):

∂q

∂K
= 2

[
〈Si〉K ∂

∂K
〈Si〉K

]
(7)

∂2q

∂K2
= 2

[
〈Si〉K ∂2

∂K2
〈Si〉K

]
+ 2

[(
∂

∂K
〈Si〉K

)2
]

. (8)

The identity m = q for K = Kp immediately follows from (4) and (1) because 〈σi〉Kp
= 〈Si〉K

if K = Kp. Identity (2) valid for K = Kp is also easy to verify from (5) and (7). Inequality
(3) is a consequence of (6) and (8).

Similar relations hold for more general correlation functions. Let us define two
correlations:

C
(2l+1)
ijk··· = [〈SiSj Sk · · ·〉2l+1

K

]
C

(2l+2)
ijk··· = [〈SiSjSk · · ·〉2l+2

K

]
(9)

where l is a non-negative integer and {i, j, k, . . .} is an arbitrary set of sites.
This C

(2l+1)
ijk··· satisfies the following identity (see the appendix)

C
(2l+1)

ijk··· = [〈σiσjσk · · ·〉Kp
〈SiSjSk · · ·〉2l+1

K

]
. (10)

Using the fact that C
(2l+2)
ijk··· is gauge invariant, we can prove the following relations at K = Kp:

C
(2l+1)

ijk··· = C
(2l+2)

ijk···
1

2l + 1

∂

∂K
C

(2l+1)

ijk··· = 1

2l + 2

∂

∂K
C

(2l+2)

ijk··· . (11)

No simple relation exists between the second derivatives for general l. It is to be noted that
equation (11) holds not just in the ferromagnetic phase but in the paramagnetic phase as
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well whereas equations (2) and (3) are trivial in the paramagnetic phase as both sides vanish
identically.

We next discuss our second new result for the order parameters. Let us denote the
dependence of the order parameters on the temperature and probability parameter explicitly
as m(K,Kp) and q(K,Kp). Then it is possible to show that

m(K,Kp) � q(K,Kp) ⇒ m(Kp,Kp) � m(K,Kp) and q(Kp,Kp) � q(K,Kp) (12)

for any K and Kp. To prove this, it is useful to write (4) explicitly as

m(K,Kp) =
∑

k

P (k)〈σi〉(k)Kp
〈Si〉(k)K =

∑
k

√
P(k)〈σi〉(k)Kp

√
P(k)〈Si〉(k)K (13)

where k stands for a bond configuration. Let us square both sides of the above equation and
apply the Schwarz inequality to obtain

m(K,Kp)2 �
∑

k

P (k)
(〈σi〉(k)Kp

)2 ∑
k

P (k)
(〈Si〉(k)K

)2

= [〈σi〉2
Kp

][〈Si〉2
K

]
= q(Kp,Kp)q(K,Kp). (14)

Now, if we assume m(K,Kp) � q(K,Kp), then q(K,Kp) on the right-hand side can be
replaced by m(K,Kp) to yield

m(K,Kp)2 � q(Kp,Kp)m(K,Kp). (15)

Since we are considering the ferromagnetic phase with up-spin boundaries, we have
m(K,Kp) > 0, and therefore by dividing both sides by m(K,Kp), we find

m(K,Kp) � q(Kp,Kp) = m(Kp,Kp). (16)

This is the first half of result (12).
The second half is proved similarly. From (14) and the assumption m(K,Kp) �

q(K,Kp), we find

q(K,Kp)2 � q(Kp,Kp)q(K,Kp) (17)

and thus

q(K,Kp) � q(Kp,Kp). (18)

A generalization to correlation functions is straightforward. The result is

C
(2l+1)
ijk··· (K,Kp) � C

(4l+2)
ijk··· (K,Kp) ⇒ C

(1)
ijk···(Kp,Kp) � C

(2l+1)
ijk··· (K,Kp) and

C
(2)
ijk···(Kp,Kp) � C

(4l+2)
ijk··· (K,Kp). (19)

To prove these inequalities, we apply the gauge transformation and Schwarz inequality
to C

(2l+1)

ijk··· (K,Kp):

C
(2l+1)
ijk··· (K,Kp)2 = [〈SiSjSk · · ·〉2l+1

K

]2
=
(∑

k

√
P(k)〈σiσjσk · · ·〉(k)Kp

√
P(k)

(
〈SiSjSk · · ·〉(k)K

)2l+1
)2

�
∑

k

P (k)
(
〈σiσjσk · · ·〉(k)Kp

)2∑
k

P (k)
(
〈SiSjSk · · ·〉(k)K

)4l+2

= [〈σiσjσk · · ·〉2
Kp

][〈SiSjSk · · ·〉4l+2
K

]
= C

(2)
ijk···(Kp,Kp)C

(4l+2)
ijk··· (K,Kp). (20)
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Figure 2. It is forbidden that the derivatives of m and q have different signs at K = Kp as shown
in this figure.
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Figure 3. The spin glass order parameter increases twice as rapidly as the ferromagnetic order
parameter around K = Kp if these quantities are increasing functions of K (left). The opposite
possibility is shown on the right.

When C
(2l+1)
ijk··· (K,Kp) � C

(4l+2)
ijk··· (K,Kp), the second factor on the right-hand side of (20) is

bounded from above by C
(2l+1)
ijk··· (K,Kp) to yield

C
(2l+1)
ijk··· (K,Kp)2 � C

(2)
ijk···(Kp,Kp)C

(2l+1)
ijk··· (K,Kp). (21)

Since C
(2l+1)

ijk··· (K,Kp) > 0 under the up-spin boundary condition, we have

C
(2l+1)
ijk··· (K,Kp) � C

(2)
ijk···(Kp,Kp) = C

(1)
ijk···(Kp,Kp) (22)

the final inequality being a result of gauge transformation of the kind described in the appendix.
This ends the proof of the first inequality of (19). By replacing the left-hand side of (20) with
the lower bound C

(4l+2)

ijk··· (K,Kp)2, we arrive at the second relation

C
(4l+2)

ijk··· (K,Kp) � C
(2)

ijk···(Kp,Kp). (23)

It is possible to apply similar arguments to the other models of spin glasses with gauge
symmetry including the random Ising model with Gaussian-distributed interactions and XY

gauge glass [3, 8]. The physical significance of the results obtained in this section will be
discussed in the next section.

3. Discussions

An immediate consequence of (2) is that the derivatives of q and m have the same sign when
K = Kp. It is forbidden that, for example, the spin glass order parameter q increases whereas
the ferromagnetic order parameter m decreases as depicted in figure 2. In the plausible case that
∂q/∂K > 0, it follows from (2) that q increases twice as rapidly as m does as the temperature
is lowered (see figure 3 (left)). It naturally follows that q is larger than m at least slightly below
the Nishimori line (K > Kp) and the opposite inequality m > q holds when K < Kp. This is
the most natural case as discussed in the introduction: the ferromagnetic ordering is dominant
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(m > q) above the Nishimori line (K < Kp) and quenched-disorder-driven random ordering
proliferates in the sense q > m below the same line (K > Kp). The point is that we have
reduced the inequality q > m for K > Kp to an intuitively natural relation ∂q/∂K > 0 at
K = Kp (although we still do not have a rigorous proof of the latter.)

If the opposite inequality ∂q/∂K < 0 holds at K = Kp, the order parameters behave as
depicted in figure 3 (right). We cannot exclude this possibility from the present argument, but it
seems quite unlikely that both order parameters q and m decrease with decreasing temperature
on and around the line K = Kp which runs through the central part of the ferromagnetic phase
as seen in figure 1. If there exists a reentrant transition (below which m vanishes but q can stay
finite), only m may decrease towards such a transition temperature from above, unlike figure 3
(right). Although we believe that such a situation is not plausible [9], it would happen at very
low temperatures if it does at all, not around the line K = Kp which runs through relatively
high-temperature parts of the ferromagnetic phase.

The final possibility is that the derivatives in (2) vanish. Again, both derivatives should
vanish, not just one of them. The inequality for the second derivative (3) does not tell much
about the behaviour of m and q around K = Kp.

It is instructive to remember in this connection that the average sign of local magnetization
reaches its maximum at K = Kp as a function of K (or the temperature) [5]

M(K,Kp) ≡ [sgn〈Si〉K ] � M(Kp,Kp). (24)

This means that the number of up spins under up-spin boundaries becomes maximum at
K = Kp as a function of K. Although this relation (24) can be proved for an arbitrary K by
the gauge theory [5], it is useful to check it by taking the derivative of (24) (as we did for m
and q):

∂M

∂K
=
[

∂

∂K
sgn〈Si〉K

]
= 2

[
δ(〈Si〉K)

∂

∂K
〈Si〉K

]
= 2

[
〈σi〉Kp

δ(〈Si〉K)
∂

∂K
〈Si〉K

]
= 0 (25)

the last equality being valid for K = Kp. Equation (25) implies that the effects of spins with
positive temperature derivative (∂〈Si〉K/∂K > 0) just match those of negative temperature
derivative (∂〈Si〉K/∂K < 0) at K = Kp if we concentrate ourselves on the spins with
vanishing local magnetization δ(〈Si〉K). Thus, at K = Kp, some spins change their local
magnetization from positive to negative values whereas essentially the same number of spins
change the sign of local magnetization in the opposite way. It should be noted, however, that
this observation does not necessarily mean vanishing derivatives of the ferromagnetic and spin
glass order parameters at K = Kp, that is, ∂m/∂K and ∂q/∂K are in general not vanishing
at K = Kp: the absolute value of local magnetization |〈Si〉K |, which is ignored in M(K),
at sites with 〈Si〉K > 0 may grow more rapidly than at sites with 〈Si〉K < 0 as K decreases,
compensating for the decrease in the number of up spins below K = Kp, leading to a positive
derivative ∂m/∂K > 0.

The present argument does not apply in the paramagnetic phase where the order
parameters m and q vanish. However, relation (11) for correlation functions, the two-point
functions C

(2l+1)
ij (K,Kp) and C

(2l+2)
ij (K,Kp) in particular, suggests that C

(2l+1)
ij (K,Kp) >

C
(2l+2)

ij (K,Kp) if K < Kp and C
(2l+1)

ij (K,Kp) < C
(2l+2)

ij (K,Kp) if K > Kp. This means

that the ferromagnetic correlation length ξm (defined by C
(1)
0r ≈ exp(−r/ξm), r � 1) is larger

than the spin glass correlation length ξq (defined by C
(2)

0r ≈ exp(−r/ξq), r � 1) for K < Kp

(above the Nishimori line) whereas the opposite inequality holds below the line.
Very similar conclusions follow from result (12). The relation between m and q shown in

figure 2 violates these inequalities because, in the temperature range where m(K,Kp) exceeds
q(K,Kp), m(K,Kp) is seen to be larger than its value at K = Kp. The cases given in
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figure 3 are compatible with the present inequalities: if m(K,Kp) > q(K,Kp), then
m(K,Kp) is smaller than m(Kp,Kp). An advantage of the present inequalities (12) over
relation (2) is that we can analyse the behaviour of order parameters well away from the
Nishimori line, that is, K can be much larger or smaller than Kp. A weak point is that
quantitative relations for the rates of increase/decrease are not given, unlike (2). Another
problem to remember concerning (12) is that we may not be able to describe the system only
in terms of m and q at very low temperatures if replica symmetry breaking exists as is the case
in the Sherrington–Kirkpartrick model [10].

The analysis presented above strongly indicates that the Nishimori line K = Kp marks
a crossover between the purely ferromagnetically-ordered region and the disorder-dominated
region within the ferromagnetic phase. This observation is also consistent with renormalization
group analyses: the low-temperature region is controlled by a fixed point at T = 0 with finite
disorder (p < 1) whereas the high-temperature region is described by a different fixed point
representative of the critical curve above the multicritical point [11, 12].

An important future direction of investigation is a rigorous proof of the relation
∂m/∂K > 0 at K = Kp, which needs additional ideas.

Appendix

In this appendix we derive equations (4) and (10) following [2, 3]. The ferromagnetic order
parameter is defined by

m = [〈Si〉K ] = 1

(2 cosh Kp)NB

∑
{τij=±1}

exp


Kp

∑
〈ij〉

τij


 ∑

{S} Si exp
(
K
∑

〈ij〉 τij SiSj

)
∑

{S} exp
(
K
∑

〈ij〉 τijSiSj

) .

(26)

Here τij is the sign of Jij (τij = Jij /|Jij | = ±1), the sums in the exponents run over all pairs
of sites on the lattice under consideration, and NB is the total number of bonds. The factor
exp(Kpτij )/2 cosh Kp gives the probability weight of the configurational average of the ±J

model since this quantity equals p for τij = 1 and 1 − p for τij = −1 as can be verified from
the definition Kp = 1

2 log(p/(1 − p)). Spins on the boundary are all up.
Let us apply a gauge transformation

Si → Siσi τij → τijσiσj (27)

to all sites, where σi is a gauge variable fixed either to 1 or −1 arbitrarily at each site (+1
on the boundary). The Hamiltonian in the exponents of (26) is invariant under this gauge
transformation. Since the gauge transformation is just a re-definition of running variables in
(26), it does not affect the value of the right-hand side, and we have

m = 1

(2 cosh Kp)NB

∑
{τij }

exp


Kp

∑
〈ij〉

τijσiσj


 σi

∑
{S} Si exp

(
K
∑

〈ij〉 τijSiSj

)
∑

{S} exp
(
K
∑

〈ij〉 τijSiSj

) . (28)

As both sides of this equation are independent of the choice of the values of {σi}, we may sum
the right-hand side over all possible values of {σi} and divide the result by 2N , where N is the
total number of sites, to find

m = 1

2N(2 cosh Kp)NB

∑
{τij }

∑
{σi}

σi exp


Kp

∑
〈ij〉

τijσiσj


 〈Si〉K. (29)
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By inserting the identity 1 = Z(Kp, {τij })/Z(Kp, {τij }) just in front of the sum over {σi} in
the summand, we obtain

m = 1

2N(2 cosh Kp)NB

∑
{τij }

∑
{σi}

exp


Kp

∑
〈ij〉

τijσiσj


 ∑

{σi} σi exp
(
Kp

∑
〈ij〉 τijσiσj

)
∑

{σi} exp
(
Kp

∑
〈ij〉 τijσiσj

) 〈Si〉K

(30)

= 1

2N(2 cosh Kp)NB

∑
{τij }

∑
{σi}

exp


Kp

∑
〈ij〉

τijσiσj


 〈σi〉Kp

〈Si〉K (31)

= 1

(2 cosh Kp)NB

∑
{τij }

exp


Kp

∑
〈ij〉

τij


 〈σi〉Kp

〈Si〉K. (32)

The last line (32) can be confirmed by applying the gauge transformation to (32) and using the
same argument as above with gauge invariance of the product 〈σi〉Kp

〈Si〉K in mind to derive
(31). Equation (32) is exactly the definition of the right-hand side of (4), which completes the
proof. A similar argument leads to (10).
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